Case(1):
Quadrilateral ABCD can be divided into two triangles ABC and ADC
So, for triangle ABC
s = a+b+c2
= 3+4+52
= 6 cm
Area of ABC
=√s×(s−a)×(s−b)×(s−c)
=√6×(6−3)×(6−4)×(6−5)
=6 cm2
Similarly,
for triangle ADC:
s =a+b+c2
=5+5+42
=7cm
Area of ADC
= √s×(s−a)×(s−b)×(s−c)
= √7×(7−5)×(7−5)×(7−4)
= 2√21 cm2
So, area of quadrilateral ABCD
= ar(ABC) + ar(ADC)
= 6+2√21 cm2
Case(2):
Area of trepezium ABCD
= 12×(base1+base2)×height
= 12×(28+40)×9= 306 cm2
Case(3):
Quadrilateral ABCD can be divided into two right triangles ABC and ADC
area of right triangle = 12×base×height
ar(ADC) = 12×base×height
= 12×12×9
= 54 cm2
ar(ABC) = 12×base×height
But, we dont know the value of BC
So, by applying the Pythagoreas theorem
AB2 = AC2+BC2
172 = 152+BC2
BC = 8 cm
So,
ar(ABC) = 12×8×15
= 60 cm2
So, area of quadrilateral ABCD = (60+54) cm2
= 114 cm2