Element
A:
Expression (xn+1xn)2=(x2)n+1(x2)n+2,........... {1}
x is the
root of the quadratic equation: x2=x+1=0
∴x=1±i√32
Now, x2=−1±i√32, which is same as cube roots of unity, i.e.
ω and ω2
Substituting x2=ω in {1},
we get
ωn+(1ω)n+2=ωn+(ω2)n+2,........... (∵1ω=ω2)
5∑n=1(xn+1xn)2=5∑n=1(ωn+(ω2)n+2)=8........(∵1+ω+ω2=0, and ω3=1)
Element B:
Expression,
[1+cosθ+isinθsinθ+i(1+cosθ)]4=[2sinθ(1+cosθ)+i(sin2θ−(1+cosθ)2)2(1+cosθ)]4
⇒[sinθ+i(sin2θ−(1+cosθ)2)2(1+cosθ)]4=(sinθ−icosθ)4
⇒cos4θ+isin4θ=cosnθ+isinnθ
∴n=4
Elecment
C:
Let z=x+iy, then ¯¯¯z=x−iy
Im(z)Re(z)=yx=tanθ=√2−1,..... (∵tan−1(Im(z)Re(z))=θ)
∴θ=22.5o
But z and
¯¯¯z are adjacent vertices of a regular polygon, so angle
between two adjacent vertices is 45o
∴ Total
number of sides, n=8
n4=2
Element
D:
Expression (r−ω)(r−ω2)=r2−r(ω+ω2)−ω3
⇒r2+r−1........(∵1+ω+ω2=0, and ω3=1)
∴150{10∑r=1(r−ω)(r−ω2)}=150{∑10r=1(r2+r−1)}=45050=9