CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the elements of List I with List II:

List-IList-II
A) π20logsinxdx=1) 4π
B) π20logtanxdx=2) π2loge2
C) π0xlogsinxdx=3) π22loge2
D) ππ(x3+xcosx+tan5x+2)dx=4) 0

A
A3,B4,C1,D2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A1,B4,C2,D3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A3,B2,C2,D1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A2,B4,C3,D1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is A A2,B4,C3,D1
A) Let, I=π20logsinxdx ..(1)

Using integration property, replace x with π2x, we get
I=π20logcosxdx ..(2)

Adding (1) and (2), we get
2I=π20log(sinxcosx)dx

2I=π20(logsin2xlog2)dx
2I=π20logsin2xdxπ20log2dx

Substitute, 2x=t2dx=dt

When, x=0t=0; x=π2t=π

Therefore,

2I=12π0logsintdtπ2log2
2I=π20logsintdtπ2log2

2I=Iπ2log2

I=π2log2
B) Let I=π20logtanxdx
I=π20logcotxdx
2I=π20logcotxdx+π20logtanxdx

2I=π20log(tanxcotx)dx

I=0 (log1=0)

C) Let, I=π0xlogsinxdx
I=π0(πx)logsinxdx (sin(πx)=sinx)
2I=ππ0logsinxdx
2I=2ππ20logsinxdx
I=π(π2loge2)

(π20logsinxdx=π2loge2)

I=π22loge2

D) I=ππ(x3+xcosx+tan5x+2)dx

Replace x by x, we get

I=ππ(x3xcosxtan5x+2)dx

Adding both, we get

2I=ππ(4)dx

I=4π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon