(A)
L1:x−12=y−23=z−34=λ so A(→a)=(1,2,3) and →b=2^i+3^j+4^k
and L2:x−13=y−34=z−55=μ
so C(→c)=(1,3,5) and →d=3^i+4^j+5^k
we find [→c−→a →b →d]=∣∣
∣∣012234345∣∣
∣∣=0
so the lines are intersecting in a point
(B) L1:x−12=y−23=z−34=λ
and L2:x−32=y−53=z−74=μ
observe that D.R′s are identical also for λ=1 and μ=0 we get (x,y,z)=(3,5,7) so lines are coincident (superimposition)
(C) L1:x−25=y+34=5−z−2=λ
and L2:x−75=y+14=z−2−2=μ
observe that D.R′s are identical
If the lines are coincident then 5λ+2=5μ+7 ...(i)
4λ−3=4μ−1 ...(ii)
and −2λ+5=−2μ+2 ....(iii)
Now from (i) and (ii) we get λ−μ=3
and from (i) and (ii) we get 3(λ−μ)=2
so the lines do not intersect ⇒lines are parallel and distinct
(D) L1:x−32=y+24=z−45=λ
and L2:x−33=y−22=z−75=μ
so →a=(3,−2,4);→b=(2,4,5);→c=(3,2,7);→d=(3,2,5)
Now [→c−→a →b →d]=∣∣
∣∣043245325∣∣
∣∣=20−24=−4
since[→c−→a →b →d] ≠0
skew lines