Match the elements of the list I, which contains inequalities, with the elements of list II, which has solution sets.
List-I (Inequality) | List-II (Solution set) |
A) x2−4x+3>0 | 1) (3,4) |
B) x2−5x+6≤0 | 2) (−1,1)∪(2,4) |
C) x2+6x−27>0,−x2+3x+4>0 | 3) (−∞,1)∪(3,∞) |
D) x2−3x−4<0,x2−3x+2>0 | 4) [3,4] |
5) [2,3] |
A: x2−4x+3>0
⇒(x−1)(x−3)>0
So, x∈(−∞,1)∪(3,∞) →(3)
B: x2−5x+6≤0
⇒(x−2)(x−3)≤0
So, x∈[2,3] →(5)
C: x2+6x−27>0 and −x2+3x+4>0
⇒(x+9)(x−3)>0 and (x−4)(x+1)<0
So, x∈(−∞,−9)∪(3,∞) and x∈(−1,4)
Taking intersection, we get
x∈(3,4) →(1)
D: x2−3x−4<0 and x2−3x+2>0
⇒(x−4)(x+1)<0 and (x−1)(x−2)>0
So, x∈(−1,4) and x∈(−∞,1)∪(2,∞)
Taking intersection, we get
x∈(−1,1)∪(2,4) →(2)
∴ The final order for A B C D is 3 5 1 2.
Hence, option B.