Match the entries of col. I with those of col. II.
Column−IColumn−II(a)f(x)=1−x+x21+x−x2 on [0,1](p)Greatest value of f=1(b)f(x)=2tanx−tan2x on [0,π2](q)Least value of f=35(c)f(x)=2π(sin2x−x) on [−π2,π2](r)Least value of f=−1(d)f(x)=12,(x3−3x2+6x−2) on (−1,1)(s)Least value of f=−6
(a)→(p,q),(b)→(p),(c)→(p,r),(d)→(p,s)
(a)→(p,q),(b)→(p),(c)→(p,r),(d)→(p,s)
(a)f′(x)=2(2x−1)(1+x−x2)2 by quotient formula
f′(x)=0⇒x=12f(0)=1,f(1)=1butf(12)=35
∴ Greatest value =1 ⇒ (p), Least value =35⇒(q)
(b)f′(x)=2sec2x(1−tanx)=0
⇒tanx=1 or x=π4andf(π4)=2−1=1
∴(b)→(p).(c)f′(x)=2π(2cos2x−1)=0∴cos2x=12=cosπ3∴x=π6f(−c2)=1,f(π2)=−1andf(π6)=√3π−13<1
∴ greatest value =1 and least value =-1
∴(C)→(p,r)(d)f′(x)=32(x2−2x+2)=32[(x−1)2+1]≠0
But f(-1)=-6,f(1)=1
∴ Least value is -6 and greatest value is 1.
∴(d)→(p,s)