The correct option is A (A)(P, Q, S),(B)(Q, R, S),(C)(P, Q, S),(D)(Q, R, S)
I1=∫10x1/4(x3/2+1+3x+3x1/2)dx
=∫10(x7/4+x1/4+3x5/4+3x3/4)dx
⇒ 4<I1<5
I2=∫10x−1/2(1+x1/3)−1dx, Put x=t6, dx=6t6 dt
I2=∫1x=0(t−3)(6t5)(1+t2)−1dt=6∫1x=0t21+t2dt
=[6t−6tan−1t]1x=0=[6(x)1/6−6tan−1(x)1/6]10
=6(1−π4)
⇒1<I2<32
I3=∫10x−3/4(1+x1/4)1/3dx, Put 1+x1/4=t3
⇒ x−3/4dx=12t2dt
I3=∫1x=0 12t3dt=[3t4]1x=0=[3(1+x1/4)4/3]10
=3(3√16−1)
⇒ 4<I3<5
I4=∫x−4(1+x2)−1/2dx, Put 1+x2=t2x2
⇒x=1(t2−1)1/2,dx=−tdt(t2−1)3/2
I4=−∫(t2−1)dt=−[t33−t]
=[−13x3√1+x2(1−2x2)]√3−1√2
=19√3×2×5=109√3
⇒ 12<I4<1