(a) Solving, 9−3x4=mx+1 ∴x=53+4m
As x is an integer ∴3+4m=± or ±5 or 4m=−3±1 or −3±5 or −2,−4,2,−8.
Since m is an integer
∴4m=−4,−8 or m=−1,−2
∴(a)→(p,q)
(b) A(3,0),B(0,−2) ∴(a,b)=(3,−2)
The line y=mx+m2 passes through (3,−2)
∴−2=3m+m2 or m2+3m+2=0
or (m+2)(m+1)=0 ∴m=−1,−2
∴(b)→(p,q)
(c) Squaring and adding, we have x2+y2=m2+n2
Point (3, 4) lies on it thereforem2+n2=25
Also 3m−4n=0
Solving, m2+(3m4)2=25 or 25m2=25×16
∴m2=16 or m=±4
∴(c)→(r,s)
(d) When y=2,4x=4 x=1 ∴(1,2)
y=mx−8m passes through (1,2).
∴2=m=8m or m2−2m−8=0 or (m−4)(m+2)=0
∴m=4,−2 ∴(d)→(q,r)