(a)→(q) as a+b=0. Its intersection with x-axis (y=0) is given by
6x2−x−1=0 or (3x+1)(2x−1)=0 ∴x=12,−13
∴Ix=x1−x2=12+13=56 ∴(a)→(r)
Its interaction with y-axis (x=0) is given by
−6y2+5Y−1=0 or 6y2−5y+1=0
or (3y−1)(2y−1)=0 ∴y=12,13.
∴Iy=y1−y2=12−13=56 ∴(a)→(s)
∴(a)→(q,r,s)
(b)→(r,s),(c)→(r,s) Proceed as in (a)
(d) 6(x+y)2−7(x+y)+1=0 or 6t2−7t+1=0
∴(t−1)(6t−1)=0
∴x+y−1=0 or x+y−16=0
∴ Parallel lines (d)→(p)
y=0,x=1,16 ∴Ix=1−16=56 ∴(d)→(r)
x=0,y=1,16 ∴Iy=1−16=56 ∴(d)→(p,r)