Byju's Answer
Standard XII
Mathematics
Cube Root of a Complex Number
Match the equ...
Question
Match the equation in
z
in
C
o
l
u
m
n
−
I
with the corresponding value of
a
r
g
(
z
)
in
c
o
l
u
m
n
−
I
I
.
C
o
l
u
m
n
−
I
(equation in z)
C
o
l
u
m
n
−
I
I
(principal value of arg(z))
z
2
−
z
+
1
=
0
−
2
π
/
3
z
2
+
z
+
1
=
0
−
π
/
3
2
z
2
+
1
+
i
√
3
=
0
π
/
3
2
z
2
+
1
−
i
√
3
=
0
2
π
/
3
Open in App
Solution
(1)
z
2
−
z
+
1
=
0
+
1
±
√
1
−
4
(
1
)
2
(
1
)
=
1
±
√
3
i
2
⇒
tan
−
1
(
y
x
)
=
tan
−
1
(
π
√
3
)
=
60
o
=
π
3
(2)
z
2
+
z
+
1
=
0
−
1
±
√
3
i
2
⇒
tan
−
1
(
−
√
3
1
)
=
2
π
3
(3)
2
z
2
+
1
+
i
√
3
=
0
z
2
=
√
−
1
−
i
√
3
2
⇒
tan
−
1
(
√
3
)
=
π
3
(4)
2
z
2
+
1
−
i
√
3
=
0
z
=
√
1
−
i
√
3
2
⇒
tan
−
1
(
√
3
)
=
−
2
π
3
Suggest Corrections
0
Similar questions
Q.
If
z
=
−
1
, then principal value of the
arg
(
z
2
/
3
)
is/are
Q.
For
z
≠
0
, define
log
z
=
log
|
z
|
+
i
(
a
r
g
z
)
where
−
π
<
a
r
g
(
z
)
≤
π
i.e.
a
r
g
(
z
)
stands for the principal argument of
z
.
log
(
−
i
)
equals :
Q.
If
arg
(
z
)
=
π
3
and
arg
(
z
−
1
)
=
2
π
3
,
then
z
is
Q.
z
1
,
z
2
,
z
3
are vertices of a triangle
Match the following functions given in Column-I with the ranges given in Column-ll
Column-I
Column-II
1.
z
1
2
+
z
2
2
+
z
3
2
=
z
2
z
3
+
z
3
z
1
+
z
1
z
2
(p) right angled
2.
R
e
(
z
3
−
z
1
z
3
−
z
2
)
=
0
(q) obtuse angled
3.
R
e
(
z
3
−
z
1
z
3
−
z
2
)
<
0
(r) Isosceles and right angled
4.
z
3
−
z
1
z
3
−
z
2
=
i
(s) equilateral
Q.
If
z
=
−
2
1
+
i
√
3
, then the value of arg(z) is
View More
Related Videos
Cube Root of a Complex Number
MATHEMATICS
Watch in App
Explore more
Cube Root of a Complex Number
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app