(a) Rewrite as
log0.5∣∣x2+2x−8∣∣|10+3x−x2|=1⇒∣∣x2+2x−8∣∣10+3x−x2=12
⇒2∣∣x2+2x−8∣∣=∣∣10+3x−x2∣∣
x∈{16(√313−1),12(√73−7)}
(b) Put t=log2(x2+7)−log2x to obtain
t=5−6t⇒t2−5t+6=0⇒t=2,3
⇒log2(x2+7x)=2,3⇒x2+7x=4,8⇒x=1,7
(c) Given equation is valid when 1−2x>0,1−2x≠1,1−3x>0,1−3x≠1,6x2−5x+1>0,4x2−4x+1>0
Rewrite the equation as
log(1−2x)[(1−2x)(1−3x)]−log1−3x(1−2x)2=2⇒1+t−2t=2
t=log(1−3x)log(1−2x)⇒t2−t−2=0⇒t=−1,2⇒x=14
(d) log10(1−x)2+1−log10(1+x)2=2log10(1−x)
⇒log10(1+x2)=11+x2=10⇒x=±3