wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the equations in List 1 with the solutions in List 2

List IList II
A.log0.25(x2+2x8)2 log0.5(10+3xx2)=11.{3}
B.log2(x2+7) =5+log2x 6log2(x+7x)2.{14}
C.log(12x)(6x25x+1)log(13x)(4x24x+1)=23.{16(3131),12(737)}
D.log10(1+x22x)+1log10(1+x2)= 2log10(1x)4.{1,7}

A
A- 3, B- 4, C- 2, D-1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A- 3, B- 4, C- 1, D-2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A- 3, B- 1, C- 2, D-4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A- 3, B- 2, C- 1, D-4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C A- 3, B- 4, C- 2, D-1
(a) Rewrite as
log0.5x2+2x8|10+3xx2|=1x2+2x810+3xx2=12
2x2+2x8=10+3xx2
x{16(3131),12(737)}
(b) Put t=log2(x2+7)log2x to obtain
t=56tt25t+6=0t=2,3
log2(x2+7x)=2,3x2+7x=4,8x=1,7
(c) Given equation is valid when 12x>0,12x1,13x>0,13x1,6x25x+1>0,4x24x+1>0
Rewrite the equation as
log(12x)[(12x)(13x)]log13x(12x)2=21+t2t=2
t=log(13x)log(12x)t2t2=0t=1,2x=14
(d) log10(1x)2+1log10(1+x)2=2log10(1x)
log10(1+x2)=11+x2=10x=±3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon