wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the expression on the left with the appropriate value on the right

Open in App
Solution

A) f(x)=∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣
f(x)=∣ ∣ ∣cos(x+α)cos(x+β)cos(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣+∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)sin(x+α)sin(x+β)sin(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣+∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)000∣ ∣ ∣=0+0+0=0
f(x) is constant function
5j=5f(j)=0
B) sin2x=1x=π4
f(x)=∣ ∣0cosxsinxsinx0cosxcosxsinx0∣ ∣=∣ ∣ ∣ ∣ ∣ ∣0cosπ4sinπ4sinπ40cosπ4cosπ4sinπ40∣ ∣ ∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ ∣ ∣ ∣012121201212120∣ ∣ ∣ ∣ ∣ ∣ ∣=12(012)12(120)=0
C) f(x)=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣
f(x)=∣ ∣ ∣sin(x)sec(x)(x)21cosec(x)(x)sin(x)cos(x)tan(x)(x)tan(x)(x)2+1∣ ∣ ∣=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣
As f(x)=f(x)f(x) is odd function
π/3π/3f(x)=0
D) D=∣ ∣ ∣1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x∣ ∣ ∣
Applying C1C1+C2+C3, we get
D=∣ ∣ ∣1+sin2x+cos2x+sin2xcos2xsin2x1+sin2x+cos2x+sin2x1+cos2xsin2x1+sin2x+cos2x+sin2xcos2x1+sin2x∣ ∣ ∣=∣ ∣ ∣2+sin2xcos2xsin2x2+sin2x1+cos2xsin2x2+sin2xcos2x1+sin2x∣ ∣ ∣=(2+sin2x)∣ ∣ ∣1cos2xsin2x11+cos2xsin2x1cos2x1+sin2x∣ ∣ ∣
Again applying R2R2R1,R3R3R1, we get
D=(2+sin2x)∣ ∣1cos2xsin2x010001∣ ∣=(2+sin2x)
Hence Max{2+sin2x}=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon