wiz-icon
MyQuestionIcon
MyQuestionIcon
11
You visited us 11 times! Enjoying our articles? Unlock Full Access!
Question

Match the expression on the left with the appropriate value on the right

Open in App
Solution

A) f(x)=∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣
f(x)=∣ ∣ ∣cos(x+α)cos(x+β)cos(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣+∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)sin(x+α)sin(x+β)sin(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣ ∣ ∣+∣ ∣ ∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)000∣ ∣ ∣=0+0+0=0
f(x) is constant function
5j=5f(j)=0
B) sin2x=1x=π4
f(x)=∣ ∣0cosxsinxsinx0cosxcosxsinx0∣ ∣=∣ ∣ ∣ ∣ ∣ ∣0cosπ4sinπ4sinπ40cosπ4cosπ4sinπ40∣ ∣ ∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ ∣ ∣ ∣012121201212120∣ ∣ ∣ ∣ ∣ ∣ ∣=12(012)12(120)=0
C) f(x)=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣
f(x)=∣ ∣ ∣sin(x)sec(x)(x)21cosec(x)(x)sin(x)cos(x)tan(x)(x)tan(x)(x)2+1∣ ∣ ∣=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣=∣ ∣ ∣sinxsecxx21cosecxxsinxcosxtanxxtanxx2+1∣ ∣ ∣
As f(x)=f(x)f(x) is odd function
π/3π/3f(x)=0
D) D=∣ ∣ ∣1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x∣ ∣ ∣
Applying C1C1+C2+C3, we get
D=∣ ∣ ∣1+sin2x+cos2x+sin2xcos2xsin2x1+sin2x+cos2x+sin2x1+cos2xsin2x1+sin2x+cos2x+sin2xcos2x1+sin2x∣ ∣ ∣=∣ ∣ ∣2+sin2xcos2xsin2x2+sin2x1+cos2xsin2x2+sin2xcos2x1+sin2x∣ ∣ ∣=(2+sin2x)∣ ∣ ∣1cos2xsin2x11+cos2xsin2x1cos2x1+sin2x∣ ∣ ∣
Again applying R2R2R1,R3R3R1, we get
D=(2+sin2x)∣ ∣1cos2xsin2x010001∣ ∣=(2+sin2x)
Hence Max{2+sin2x}=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon