A) f(x)=∣∣
∣
∣∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣∣
∣
∣∣
⇒f′(x)=∣∣
∣
∣∣cos(x+α)cos(x+β)cos(x+γ)cos(x+α)cos(x+β)cos(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣∣
∣
∣∣+∣∣
∣
∣∣sin(x+α)sin(x+β)sin(x+γ)−sin(x+α)−sin(x+β)−sin(x+γ)sin(β+γ)sin(γ+α)sin(α+β)∣∣
∣
∣∣+∣∣
∣
∣∣sin(x+α)sin(x+β)sin(x+γ)cos(x+α)cos(x+β)cos(x+γ)000∣∣
∣
∣∣=0+0+0=0
⇒f(x) is constant function
⇒∑5j=−5f(j)=0
B) sin2x=1⇒x=π4
f(x)=∣∣
∣∣0cosx−sinxsinx0cosxcosxsinx0∣∣
∣∣=∣∣
∣
∣
∣
∣
∣∣0cosπ4−sinπ4sinπ40cosπ4cosπ4sinπ40∣∣
∣
∣
∣
∣
∣∣=∣∣
∣
∣
∣
∣
∣
∣∣01√2−1√21√201√21√21√20∣∣
∣
∣
∣
∣
∣
∣∣=−1√2(0−12)−1√2(12−0)=0
C) f(x)=∣∣
∣
∣∣sinxsecxx2−1cosecxxsinxcosxtanxxtanxx2+1∣∣
∣
∣∣
f(−x)=∣∣
∣
∣∣sin(−x)sec(−x)(−x)2−1cosec(−x)(−x)sin(−x)cos(−x)tan(−x)(−x)tan(−x)(−x)2+1∣∣
∣
∣∣=∣∣
∣
∣∣−sinxsecxx2−1−cosecxxsinxcosx−tanxxtanxx2+1∣∣
∣
∣∣=−∣∣
∣
∣∣sinxsecxx2−1cosecxxsinxcosxtanxxtanxx2+1∣∣
∣
∣∣
As f(x)=f(−x)⇒f(x) is odd function
∫π/3−π/3f(x)=0
D) D=∣∣
∣
∣∣1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x∣∣
∣
∣∣
Applying C1→C1+C2+C3, we get
D=∣∣
∣
∣∣1+sin2x+cos2x+sin2xcos2xsin2x1+sin2x+cos2x+sin2x1+cos2xsin2x1+sin2x+cos2x+sin2xcos2x1+sin2x∣∣
∣
∣∣=∣∣
∣
∣∣2+sin2xcos2xsin2x2+sin2x1+cos2xsin2x2+sin2xcos2x1+sin2x∣∣
∣
∣∣=(2+sin2x)∣∣
∣
∣∣1cos2xsin2x11+cos2xsin2x1cos2x1+sin2x∣∣
∣
∣∣
Again applying R2→R2−R1,R3→R3−R1, we get
D=(2+sin2x)∣∣
∣∣1cos2xsin2x010001∣∣
∣∣=(2+sin2x)
Hence Max{2+sin2x}=3