A) Putting x+2=t, where t>0. Then
x2+2x+4x+2=(t−2)2+2(t−2)+4t=t2−2t+4t=t+4t−2=[√t−2√t]2+2≥2
∴ least value of x2+2x+4x+2 is 2 which is attained when x=0.
B) (A+B)(A+B)=(A+B)(A−B)⇒AB=BA
Now, (AB)′=B′A′=(−B)A=−BA=−AB.
∴(−1)k=−1⇒k=1,3
C) 1<2(−k+3−a)<2⇒0<−k+3−a<1
⇒k<3−a<k+1⇒k<(log32)−1<k+1
⇒k<log23<k+1⇒2k<3<2k+1⇒k=1
D) k2−3=(n−1)!r!(n−r−1)!(r+1)!(n−r−1)!n!=r+1n
But 0<r+1n≤1.
Thus, 0<k2−3≤1⇒k=2.