Case 1:
(99)2 can be written as
(100−1)2
Using the identity (a−b)2=a2+b2−2ab,
(100−1)2=(100)2+(1)2−2×100×1
⇒(99)2=10000+1−200=9801
Case 2:
(95×105) can be written as,
(100−5)×(100+5)
Using the identity (a+b)(a−b)=a2−b2,
(100+5)(100−5)=(100)2−(5)2
⇒95×105=10000−25=9975.
Case 3:
10.1×10.2 can be written as (10+0.1)×(10+0.2)
Using the identity (x+a)(x+b)=x2+(a+b)x+ab,
Here, x = 10, a = 0.1 and b = 0.2
(10+0.1)(10+0.2)=(10)2+(0.1+0.2)10+0.1×0.2
⇒10.1×10.2=100+3+0.02=103.02.
Case 4:
(69.3)2−(30.7)2
Using the identity a2−b2=(a+b)(a−b),
Here, a = 69.3 and b = 30.7
(69.3)2−(30.7)2=(69.3+30.7)(69.3−30.7)
⇒(69.3)2−(30.7)2=100×38.6=3860.