Match the following
Given sinA=23 and sinB=14
(1) sin(A+B)(p) 2√15−√52+5√3(2) Cos(A−B)(q) 55144(3) Tan(A−B)(r) 2√15+√512(4) Sin(A+B)sin(A−B)(s) 5√3+212
1-R, 2-S, 3-P, 4-Q
This is a direct application of sin(A+B), sin(A-B), cos(A+B) etc., or trigonometric ratios of compound angles.
Before we calculate them, we need cosA, cosB, tanA and tanB to easily calculate the ratios asked. For that, we will construct proper triangles and find the ratios.
SinA=23 SinB=14
cosA=√53 cosA=√154
tanA=2√5 tanB=1√15
(1) Sin (A+B) = sinA cosB + cosA sinB
= 23×√154+√53×14
= 2√15+√512
(2) Cos(A-B) = cosA cosB + sinA sinB
= √53×√154+23×14
= 5√3+212
(3) tan(A - B) = fractanA−tanB1+tanAtanB
= 2√5−1√15(1+2√5×1√15)
= 2√15−√5√5×√15+2
= 2√15−√55√3+2
(4) Sin(A+B) sin(A-B) = sin2A−sin2B
= (23)2−(14)2
= 49−116
= 64−99×16
= 55144