wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the following items of column I with column II
Column Icolumn II(a)If f (x)=g(x)0dt1+t3 where g(x)=(p)2cosx0(1+sint2)dt, then the value of f(π2) is(b)Ifba(2+xx2)dx is maximum, then (a + b) is(q)2equal to(c)If limx0(sin2xx3+a+bx2)=0, then (3a + b)is equal(r)1to(d)Number of points of maxima for f(x)=x1+xtanx in(s)1xϵ(0,π2)

A
(a) – (r); (b) – (s); (c) – (p); (d) – (q)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a) – (s); (b) – (r); (c) – (p); (d) – (r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(a) – (s); (b) – (q); (c) – (p); (d) – (r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a) – (r); (b) – (p); (c) – (q); (d) – (s)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (a) – (s); (b) – (r); (c) – (p); (d) – (r)
(A) f(x)=g(x)1+(g(x))3 and g(x)=[1+sin(cos2x)](sinx)

Hence, f(x)=[1+sin(cos2x)(sinx)]1+(g(x))3

f(π2)=(1+0)(1)1+(g(π2))3=11+0=1 as g(π2)=0

f(π2)=1

(B) f(x)=2+xx2
Area under the graph is maximum when a=1 and b=2

a+b=1

(C) Given, limx0(sin2xx3+a+bx2)=0

limx0sin2x+ax3+bxx3=0

For limit to exist, 2+b=0b=2

limx0sin2x+ax32xx3=0

Applying L'Hospital Rule,
limx02cos2x+3ax223x2=0

limx04sin2x+6ax6x=0

limx08cos2x+6a6=0

8+6a=0

a=43

3a+b=3×432=2

(D) f(x)=x1+xtanx

f(x)=1+xtanxx(tanx+xsec2x)(1+xtanx)2

=1+xtanxxtanxx2secx(1+xtanx)2=1x2sec2x(1+xtanx)2

To find maxima, f(x)=0

x2sec2x=1

x=±cosx

f(x) has maxima at x=cosx

Hence, number of points of maxima is 1.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon