The correct option is
B 1−d,2−c,3−b,4−aA) cos6∘sin24∘cos72∘=cos6∘cos66∘cos72∘
=cos6∘cos66∘cos54∘cos72∘cos54∘
(∵cosθcos(60∘−θ)cos(60∘+θ)=14cos3θ)
=cos(3×6∘)cos72∘8cos54∘=cos18∘cos72∘cos54∘
=cos(18∘+72∘)+cos(18∘−72∘)8cos54∘=cos90∘+cos54∘cos54∘=18
B) cos10∘cos30∘cos50∘cos70∘=cos30∘cos10∘cos50∘cos70∘
(∵cosθcos(60∘−θ)cos(60∘+θ)=14cos3θ)
=√32×4cos(3×10∘)=√38cos30∘=316
C) sin12∘sin24∘sin48∘sin84∘
=14(2sin12∘sin48∘)(2sin24∘sin84∘)
=14(cos(12∘−48∘)−cos(12∘+48∘))(cos(24∘−84∘)−cos(24∘+84∘))
=14×14=116
D)sin20∘sin40∘sin60∘sin80∘
(∵sinθsin(60∘−θ)sin(60∘+θ)=14sin3θ)
=14sin60∘sin(3×20∘)=14(sin60∘)2=316