(P) l=∫π0x(sin2(sinx)+cos2(cosx))dx
l=∫π0(π−x)(sin2(sinx)+cos2(cosx))dx
2l=x∫π0(sin2(sinx)+cos2(cosx))dx
2l=2x∫π/20(sin2(sinx)+cos2(cosx))dx
Again l=π∫π/20(sin2(cosx)+cos2(sinx))dx
2l=π∫π/202dx⇒l=π.π2=π22
(Q) Let f(x)=2sin√x
Then x.f′(x)=x.2cos√x√x=√xcos√x
l=∫π2/160(f(x)+xf′(x))dx=(xf(x))π2/160=π28√2
(R) ∫π/4−π/4In(√1+sin2x)dx=∫π/4−π/4In|sinx+cosx|dx
=∫π/4−π/4In∣∣∣√2sin(x−π4)∣∣∣dx=∫π/40In|√2sint|dt=−π4×In2
(S) l=∫π0x3cos4xsin2xπ2−3πx+3x2dx
2l=∫π0cos4xsin2xdx
l=π∫π/20cos4xsin2xdx=π232