wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the following List I with List II

Open in App
Solution

(P) l=π0x(sin2(sinx)+cos2(cosx))dx
l=π0(πx)(sin2(sinx)+cos2(cosx))dx
2l=xπ0(sin2(sinx)+cos2(cosx))dx
2l=2xπ/20(sin2(sinx)+cos2(cosx))dx
Again l=ππ/20(sin2(cosx)+cos2(sinx))dx
2l=ππ/202dxl=π.π2=π22
(Q) Let f(x)=2sinx
Then x.f(x)=x.2cosxx=xcosx
l=π2/160(f(x)+xf(x))dx=(xf(x))π2/160=π282
(R) π/4π/4In(1+sin2x)dx=π/4π/4In|sinx+cosx|dx
=π/4π/4In2sin(xπ4)dx=π/40In|2sint|dt=π4×In2
(S) l=π0x3cos4xsin2xπ23πx+3x2dx
2l=π0cos4xsin2xdx
l=ππ/20cos4xsin2xdx=π232

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon