Match the following properties.
The determinant ∣∣ ∣ ∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣ ∣ ∣∣ equals to:
(a) abc(b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) None of these
a2+bc+ab+ac=?(a) (a+b)(a+c)(b) (a+b)(b+c)(c) (b+c)(c+a)(d) a(a+b+c)
In the adjoining figure, if BC=a,AC=b,AB=c and ∠CAB=120∘, then which of the following is the correct relation?