For any quadratic polynomial y=ax2+bx+c, the coordinates of the vertex is given as:
(−b2a,−D4a)⋯(i)
Now, let's take the quadratic expressions one by one to find it's vertex.
(1). y=5x2+10x+3
On comparing with standard form of quadratic expression y=ax2+bx+c
we get, a=5,b=10,c=3
D=b2−4ac=(10)2−4⋅5⋅3=40
Substituting the values of a,b & D in (i), we get:
(−b2a,−D4a)≡(−102⋅5,−404⋅5)≡(−1,−2)
Hence, the coordinates of vertex is given as:
(−1,−2).
(2). y=3x2−2x+3
On comparing with standard form of quadratic expression y=ax2+bx+c
we get, a=3,b=−2,c=3
D=b2−4ac=(−2)2−4⋅3⋅3=−32
Substituting the values of a,b & c in (i), we get:
(−b2a,−D4a)≡(−(−2)2⋅3,−(−32)4⋅3)≡(13,83)
Hence, the coordinates of vertex is given as:
(13,83).
(3). y=7x2−11x−1
On comparing with standard form of quadratic expression y=ax2+bx+c
we get, a=7,b=−11,c=−1
D=b2−4ac=(−11)2−4⋅7⋅(−1)=149
Substituting the values of a,b & c in (i), we get:
(−b2a,−D4a)≡(−(−11)2⋅7,−1494⋅7)≡(1114,−14928)
Hence, the coordinates of vertex is given as:
(1114,−14928).
(4). y=−9x2+4x−5
On comparing with standard form of quadratic expression y=ax2+bx+c
we get, a=−9,b=4,c=−5
D=b2−4ac=(4)2−4⋅(−9)⋅(−5)=−164
Substituting the values of a,b & c in (i), we get:
(−b2a,−D4a)≡(−42⋅(−9),−(−164)4⋅(−9))≡(29,−419)
Hence, the coordinates of vertex is given as:
(29,−419).