A. Differentiate the given function with respect to x.
ddx(sinx)=cosx
Hence, A→4
B. Differentiate the given function with respect to x.
ddx(x−4)=−4x(−4−1)
⇒ddxx−4=−4x−5
Hence, B→1
C. Differentiate the given function with respect to x.
ddx(2secx)=−2tanxsecx
⇒ddx2secx=−2sinx.
Hence, C→2.
D. Differentiate the given function with respect to x.
ddx(3x3)=9x(3−1)
⇒ddx3x3=9x2
Hence, D→3