1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
First Fundamental Theorem of Calculus
Match the fol...
Question
Match the following with the integrating factor of the D.E., A, B, C, D
List I
List II
A)
d
y
d
x
−
y
cot
x
=
csc
x
1.
x
sin
x
B)
x
log
x
d
y
d
x
+
y
=
2
log
x
2.
x
e
x
C)
x
sin
x
d
y
d
x
+
y
(
x
cos
x
+
sin
x
)
=
sin
x
3.
cos
e
c
x
D)
x
d
y
d
x
+
y
(
1
+
x
)
=
1
4.
−
cos
e
c
x
5.
l
o
g
x
A
3, 5, 1, 4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3, 5, 1, 2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3, 1, 5, 4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2, 3, 4, 5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
3, 5, 1, 2
I
.
F
=
e
∫
p
(
x
)
d
x
A
)
p
(
x
)
=
−
cot
x
⇒
∫
p
(
x
)
d
x
=
∫
−
cot
x
d
x
=
log
csc
x
⇒
I
.
F
=
e
log
csc
x
=
csc
x
B
)
d
y
d
x
+
y
x
log
x
∫
p
(
x
)
d
x
=
∫
1
x
log
x
d
x
put
log
x
=
t
1
x
d
x
=
d
t
⇒
∫
1
t
d
t
=
log
t
∫
p
(
x
)
d
x
=
log
log
x
⇒
I
.
F
=
e
log
log
x
=
log
x
C
)
d
y
d
x
+
y
[
x
cos
x
+
sin
x
x
sin
x
]
=
1
x
∫
p
(
x
)
d
x
=
∫
cot
x
d
x
+
∫
1
x
d
x
=
log
sin
x
+
log
x
=
log
x
sin
x
⇒
I
.
F
=
e
∫
p
(
x
)
d
x
=
e
log
x
sin
x
=
x
sin
x
D
)
d
y
d
x
+
y
(
1
+
x
x
)
=
1
x
∫
p
(
x
)
d
x
=
∫
1
x
d
x
+
∫
1
d
x
=
log
x
+
x
⇒
I
.
F
=
e
log
x
+
x
=
x
.
e
x
Suggest Corrections
0
Similar questions
Q.
If
y
=
1
+
x
−
x
2
2
!
−
x
3
3
!
+
x
4
4
!
+
x
5
5
!
−
.
.
.
.
.
.
.
.
then
d
y
d
x
=
Q.
Integrating factor of
x
d
y
d
x
−
y
=
x
4
−
3
x
is
Q.
Match each of the items A, B, C with an appropriate item from 1, 2, 3, 4 and 5
(A)
a
1
d
2
y
d
x
2
+
a
2
y
d
y
d
x
+
a
3
y
=
a
4
(B)
a
1
d
3
y
d
x
3
+
a
2
y
=
a
3
(C)
a
1
d
3
y
d
x
2
+
a
2
x
d
y
d
x
+
a
3
x
2
y
=
0
(1) non-linear diferential equation
(2) linear differential equation with constant coefficients
(3) linear homogeneous differential equation
(4) non- linear homogeneous differential equation
(5) non-linear first order differential equation
Q.
For each of the differential equations, find the general solution:
1.
d
y
d
x
+
2
y
=
sin
x
2.
d
y
d
x
+
3
y
=
e
−
2
x
3.
d
y
d
x
+
y
x
=
x
2
4.
d
y
d
x
+
(
sec
x
)
y
=
tan
x
...
(
0
≤
x
<
π
2
)
5.
cos
2
x
d
y
d
x
+
y
=
tan
x
...
(
0
≤
x
<
π
2
)
6.
x
d
y
d
x
+
2
y
=
x
2
log
x
7.
x
log
x
d
y
d
x
+
y
=
2
x
log
x
8.
(
1
+
x
2
)
d
y
+
2
x
y
d
x
=
cot
x
d
x
...
(
x
≠
0
)
9.
x
d
y
d
x
+
y
−
x
+
x
y
cot
x
=
0
...
(
x
≠
0
)
10.
(
x
+
y
)
d
x
d
y
=
1
11.
y
d
x
+
(
x
−
y
2
)
d
y
=
0
12.
(
x
+
3
y
2
)
d
y
d
x
=
y
...
(
y
>
0
)
Q.
An integrating factor of the differential equation
(
1
−
x
2
)
d
y
d
x
+
x
y
=
x
4
(
1
+
x
5
)
(
√
1
−
x
2
)
3
is:
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Explore more
First Fundamental Theorem of Calculus
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app