A)
y=√100−x2 on [-6, 8]
dydx=−2x2√100−x2
∴ The greatest value is at x=0.
i.e., y=10
B)
y=2tanx−tan2x on [0,π2]
dydx=2sec2x−2tanxsec2x
dydx=2sec2x(1−tanx)
∴ The greatest value is at tanx=1.
i.e., y=1 (Since, dydx changes sign from positive to negative)
C)
y=tan−11−x1+x on [0,1]
⇒y=tan−1π4−tan−1x
dydx=−11+x2<0
y is decreasing.
∴ The greatest value is at x=0.
i.e., y=π4
D)
y=a2x+b21−x on (0, 1), a> 0, b > 0
dydx=−a2x2+b2(1−x)2
d2ydx2=2a2x3+2b2(−x)3>0 on (0,1)
∴ No greatest value on (0,1).
A→2,B→4,C→3,D→1