x2−2x+5=x2−2x+1+4
=(x−1)2+4
The minimum value of the expression is 4, when x = 1. The maximum value of the expression is ∞
Thus, 4≤(x−1)2+4≤∞
Or, 14≥1x2−2x+5>0
Thus, the values of the expression 1x2−2x+5 lie in the interval (0,14]
x2+4x−3=x2+4x+4−7
=(x+2)2−7
The minimum value of the expression is -7, when x = -2. The maximum value of the expression is ∞
Thus, −7≤(x+2)2+−7≤∞
Thus, the values of the expression x2+4x−3 lie in the interval (−7,∞
x2−6x+18=x2−6x+9+9
=(x−3)2+9
The minimum value of the expression is 9, when x = 3. The maximum value of the expression is ∞
Thus, 9≤(x−3)2+9≤∞
and, 3≤√(x−3)2+9≤∞
Or, 13≥1√x2−6x+18>0
Thus, the values of the expression 1√x2−6x+18 lie in the interval (0,13]
x2−8x+25=x2−8x+16+9
=(x−4)2+9
The minimum value of the expression is 9, when x = 4. The maximum value of the expression is ∞
Thus, 9≤(x−4)2+9≤∞
Or, 3≤√x2−8x+25≤∞
Thus, the values of the expression √x2−8x+25 lie in the interval (3,∞)