Match the items in column I with their respective values in column II.
1. According to Bohr's thoery
En = Total energy
Kn = Kinetic energy
Vn = Potential energy
rn = Radius of nth orbit energy
Column IColumn IIa.VnKn=?p.0b.If radius ofnthorbit∝Exn,x=?q.−1c.Angular momentum in lowest orbitalr.−2d.1rn∝Zy,y=?s.1
a > r, b > q, c > p, d > s
(a → r) For Bohr's electron in H atom
KE = e22r
PE = −e2r
VnKn=PEKE=2
(b → q) r ∝ n2
En ∝ 1n2
or n2 ∝ 1En
or r ∝ 1En
or r∝E−1n
(c → p) The orbital angular momentum is: h2π√l(l+1)
The orbital angular momentum for an electron in s orbital (l = 0) (lowest orbital is 1s) is 0.
(d → s)r ∝ 1Z
or 1r∝ Z