For (i) case,
AB = 1 and AC = cosec θ
Applying pythagoras theorem,
AC2=AB2+BC2
cosec2θ=12+BC2
⇒ BC=√cosec2θ−1=√cot2θ
∴BC=cot θ [from Identity]
For (ii) case,
AB = 1cos θ = secθ and BC = tanθ
Applying pythagoras theorem,
AC2=AB2+BC2
AC2=sec2θ+tan2θ
⇒ AC=√sec2θ+tan2θ=√1
∴AC=1 [from Identity]
For (iii) case,
AB = 1cosec θ = sinθ and AC = 1
Applying pythagoras theorem,
AC2=AB2+BC2
12=sin2θ+BC2
⇒ BC=√1−sin2θ=√cos2θ
∴BC=cos θ [from Identity]