A) If cosB−sinA>0
then sinB−cosA<0
And if cosB−sinA<0 then sinB−cosA>0
Hence the point is in 2nd or 4th quadrant
B) As 2sinθ>1⇒sinθ>log21⇒sinθ>0
and 3cosθ<1⇒cosθ<log31⇒cosθ<0
Therefore, θ lies in 2ndquadrant
C) From triangle inequality |cosx+sinx|≥|sinx|+|cosx|
and equality holds when sinx.cosx>0
Therefore x lies in 1st or 3rd quadrant
D) √1−sinA1+sinA+sinAcosA=√1−sinA1+sinA×1−sinA1−sinA+sinAcosA
=√(1−sinA)2√1−sin2A+sinAcosA
...(1)
If A is in 1st quadrant then (1) gives
1−sinAcosA+sinAcosA=1cosA
And if A is in 4th quadrant then (1) gives
(1−sinA)cosA+sinAcosA=1cosA
In other cases the equation will not hold.