wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Match the possible values of x mentioned in column II for the equations mentioned in column I
Column I Column II
(A) x(log5x)2+5log5x+2=58 (p) 1
(B) (x2+6)log3x=(5x)log3x (q) 2
(C) (3+22)x26x+9+(322)x26x+9=6 (r) 3
(D) log88x2÷(log8x)2=3 (s) 4
(t) 5


Open in App
Solution

(A)
x(log5x)2+5log5x+2=58
logx58=(log5x)2+5log5x+2
8logx5=(log5x)2+5log5x+2 (Let log5x=A)
8A=A2+5A+2
A2+5A2+2A8=0
(A1)(A+2)(A+4)=0
x=5,52,54
Solution A(t)

(B)
(x2+6)log3x=(5x)log3x
x2+6=5x
x25x+6=0
x23x2x+6=0
(x2)(x3)=0
x2=0x=2x3=0x=3
When x = 1, the equation is satisfied. So, solution is p, q, r.

(C)
(3+22)x26x+9+(322)x26x+9=6
Let (3+22)x26x+9=A
(322)x26x+9=(322)x26x+9(3+22)x26x+9×(3+22)x26x+9
=1(3+22)x26x+9=1A
Now,
A+1A=6
A2+1=6A
A26A+1=0
A=6±322
A=6±422=2(3±22)2
=(3+22),(322)
A=3+22 A=322
(3+22)x26x+9=(3+22)1
(3+22)x26x+9=(3+22)1
x26x+9=1 x26x+9=1
x26x+8=0 x26x+10=0
x24x2x+8=0
x(x4)2(x4)=0=6±42
(x4)(x2)=0
x=2,4
Solution of C (q, s)

(D)
log88x2(log8x)2=9
1log8X2(log8X)2=3
12yy2=3(Let log8x=y)
3y2+2y1=0
3y2+2y1=0
3y(y+1)(y+1)=0
y=13,1
y=13
log8x=13
813=x
y=1
x=18
813=x
x=2
Solution of D (q)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon