(A)
x(log5x)2+5log5x+2=58
⇒logx58=(log5x)2+5log5x+2
⇒8logx5=(log5x)2+5log5x+2 (Let log5x=A)
⇒8A=A2+5A+2
⇒A2+5A2+2A−8=0
⇒(A−1)(A+2)(A+4)=0
⇒x=5,5−2,5−4
Solution A(t)
(B)
(x2+6)log3x=(5x)log3x
⇒x2+6=5x
⇒x2–5x+6=0
⇒x2–3x–2x+6=0
⇒(x–2)(x–3)=0
∴x−2=0x=2∣∣∣x−3=0x=3
When x = 1, the equation is satisfied. So, solution is p, q, r.
(C)
(3+2√2)x2−6x+9+(3−2√2)x2−6x+9=6
Let (3+2√2)x2−6x+9=A
(3−2√2)x2−6x+9=(3−2√2)x2−6x+9(3+2√2)x2−6x+9×(3+2√2)x2−6x+9
=1(3+2√2)x2−6x+9=1A
Now,
⇒A+1A=6
⇒A2+1=6A
⇒A2−6A+1=0
∴A=6±√322
A=6±4√22=2(3±2√2)2
=(3+2√2),(3−2√2)
∴A=3+2√2 A=3−2√2
⇒(3+2√2)x2−6x+9=(3+2√2)−1
(3+2√2)x2−6x+9=(3+2√2)−1
∴x2−6x+9=1 x2−6x+9=−1
⇒x2−6x+8=0 x2−6x+10=0
⇒x2−4x−2x+8=0
⇒x(x−4)−2(x−4)=0=6±√−42
⇒(x−4)(x−2)=0
⇒x=2,4
Solution of C (q, s)
(D)
log88x2(log8x)2=9
⇒1−log8X2(log8X)2=3
⇒1−2yy2=3(Let log8x=y)
⇒3y2+2y−1=0
⇒3y2+2y−1=0
⇒3y(y+1)−(y+1)=0
∴y=13,−1
y=13
log8x=13
∴813=x
y=−1
⇒x=18
∴813=x
x=2
Solution of D (q)