A) (x−3)2y′+y=0⇒(x−3)2dydx+y=0⇒∫dx(x−3)2=−∫dyy⇒1x−3=ln|y|+C
Hence domain is R−{3}
B) ∫51(x−1)(x−2)(x−3)(x−4)(x−5)dx
Substituting x=t+3, we get
∫2−2(t+2)(t+1)t(t−1)(t−2)dt=∫2−2t(t2−1)(t2−4)dt=0
C) f(x)=cos2x+sinx=54−(sinx−12)2
So f(x) is maximum for sinx=12⇒x=π6
D) f(x)=tan−1(sinx+cosx) is increasing when ⇒f′(x)>0⇒cosx>sinx