A) ∣∣→a∣∣=2,∣∣∣→b∣∣∣=2,∣∣→c∣∣=2√3
Angle between →a and →b is
cosθ=∣∣→a∣∣2+∣∣∣→b∣∣∣2−∣∣→c∣∣22∣∣→a∣∣∣∣∣→b∣∣∣=4+4−122×2×2=−12
⇒θ=2π3
B) ∫ba(f(x)−3x)dx=a2−b2
⇒∫baf(x)dx−∫ba3xdx=a2−b2
⇒∫baf(x)dx=b2−a22
⇒f(x)=x
⇒f(π6)=π6
C) I=π2ln3∫5/67/6sec(πx)dx
=π2ln3[ln|(sec(πx)+tan(πx))|]5/67/6 =π2ln3×1πln3
=π
D) Let u=11−z
⇒z=1−1u
Given that |z|=1⇒∣∣∣1−1u∣∣∣=1
⇒|u−1|=|u|
∴ locus of u is perpendicular bisector of line segment joining (1,0) and (0,0) in complex plane.
⇒ maximum argument approaches π2