wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the statements in Column I with the statements in Column II

Open in App
Solution

A) A=∣ ∣ ∣ ∣ ∣ ∣ ∣1c1c(a+b)c2(a+b)a21a1ab(b+c)a2c(a+2b+c)acb(b+c)ac2∣ ∣ ∣ ∣ ∣ ∣ ∣
Multiplying C1 by a, C2 by b and C3 by c, we get

A=1abc∣ ∣ ∣ ∣ ∣ ∣ ∣acbc(a+b)c(a+b)abacab(b+c)acb(a+2b+c)acb(b+c)ac∣ ∣ ∣ ∣ ∣ ∣ ∣

Now applying C1C1+C2+C3, we get
A=1abc∣ ∣ ∣ ∣ ∣ ∣0bc(a+b)c0baca0b(a+2b+c)acb(b+c)ac∣ ∣ ∣ ∣ ∣ ∣=0
B) B=∣ ∣sinacosbsinasinbcosacosacosbcosasinbsinasinasinbsinacosb0∣ ∣

Applying C1C1cotbC2, we get

B=∣ ∣ ∣ ∣0sinasinbcosa0cosasinbsinasinasinbsinacosb0∣ ∣ ∣ ∣=sinasinb[sinbsin2acos2asinb]=sina
C) C=∣ ∣ ∣ ∣ ∣ ∣ ∣1sinacosb1sinasinb1cosacosasin2acosbcosasin2asinbsinacos2asinbsinacos2bcosbsinasin2b0∣ ∣ ∣ ∣ ∣ ∣ ∣

Taking out 1sinacosb from C1, 1sinasinb from C2 and 1cosa from C3

C=1sin2acosasinbcosb∣ ∣111cotacotatanatanbcotb0∣ ∣

Applying C1C1C2, we get
C=tana+cotasinbcosb=1sinbcosbsinacosa
D) Δ=∣ ∣a2bsinAcsinAbsinA1cosAcsinAcosA1∣ ∣

Using sinAa=sinBb=sinCc=k

Δ=∣ ∣a2bakcakbak1cosAcakcosA1∣ ∣=a2∣ ∣1bkckbk1cosAckcosA1∣ ∣=a2∣ ∣1sinBsinCsinB1cosAsinCcosA1∣ ∣

Applying C2C2sinBC1,C3C3sinCC1, we get

Δ=a2∣ ∣ ∣100sinB1sin2BcosAsinBsinCsinCcosAsinBsinC1sin2C∣ ∣ ∣=a2[cos2Bcos2C(cosAsinBsinC)2]

As A+B+C=π

cosA=cos(π(B+C))=cos(B+C)=(cosBcosCsinBsinC)cosAsinBsinC=cosBcosC

Δ=a2[cos2Bcos2C(cosBcosC)2]=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon