A)
A=∣∣
∣
∣
∣
∣
∣
∣∣1c1c−(a+b)c2−(a+b)a21a1a−b(b+c)a2c(a+2b+c)ac−b(b+c)ac2∣∣
∣
∣
∣
∣
∣
∣∣Multiplying
C1 by
a,
C2 by
b and
C3 by
c, we get
A=1abc∣∣
∣
∣
∣
∣
∣
∣∣acbc−(a+b)c−(a+b)abaca−b(b+c)acb(a+2b+c)ac−b(b+c)ac∣∣
∣
∣
∣
∣
∣
∣∣
Now applying C1→C1+C2+C3, we get
A=1abc∣∣
∣
∣
∣
∣
∣∣0bc−(a+b)c0baca0b(a+2b+c)ac−b(b+c)ac∣∣
∣
∣
∣
∣
∣∣=0
B) B=∣∣
∣∣sinacosbsinasinbcosacosacosbcosasinb−sina−sinasinbsinacosb0∣∣
∣∣
Applying C1→C1−cotbC2, we get
B=∣∣
∣
∣
∣∣0sinasinbcosa0cosasinb−sina−sinasinbsinacosb0∣∣
∣
∣
∣∣=−sinasinb[−sinbsin2a−cos2asinb]=sina
C) C=∣∣
∣
∣
∣
∣
∣
∣∣1sinacosb1sinasinb1cosa−cosasin2acosb−cosasin2asinbsinacos2asinbsinacos2b−cosbsinasin2b0∣∣
∣
∣
∣
∣
∣
∣∣
Taking out 1sinacosb from C1, 1sinasinb from C2 and 1cosa from C3
C=1sin2acosasinbcosb∣∣
∣∣111−cota−cotatanatanb−cotb0∣∣
∣∣
Applying C1→C1−C2, we get
C=tana+cotasinbcosb=1sinbcosbsinacosa
D) Δ=∣∣
∣∣a2bsinAcsinAbsinA1cosAcsinAcosA1∣∣
∣∣
Using sinAa=sinBb=sinCc=k
Δ=∣∣
∣∣a2bakcakbak1cosAcakcosA1∣∣
∣∣=a2∣∣
∣∣1bkckbk1cosAckcosA1∣∣
∣∣=a2∣∣
∣∣1sinBsinCsinB1cosAsinCcosA1∣∣
∣∣
Applying C2→C2−sinBC1,C3→C3−sinCC1, we get
Δ=a2∣∣
∣
∣∣100sinB1−sin2BcosA−sinBsinCsinCcosA−sinBsinC1−sin2C∣∣
∣
∣∣=a2[cos2Bcos2C−(cosA−sinBsinC)2]
As A+B+C=π
cosA=cos(π−(B+C))=−cos(B+C)=−(cosBcosC−sinBsinC)⇒cosA−sinBsinC=cosBcosC
⇒Δ=a2[cos2Bcos2C−(cosBcosC)2]=0