Match the statements in column-I with those I column-II [Note : Here z takes the values in the complex plane and Im(z) and Re(z) denote, respectively, the imaginary part and the real part of z]
Open in App
Solution
A) Let z=x+iy |z−i|z||=|z+i|z||
|x+iy−i√x2+y2|=|x+iy+i√x2+y2|
|x+i(y−√x2+y2)|=|x+i(y+√x2+y2)|
√x2+(y−√x2+y2)2=√x2+(y+√x2+y2)2 Squaring both sides, we get
x2+(y−√x2+y2)2=x2+(y+√x2+y2)2
∴4y√x2+y2=0⇒y=0 Imaginary part is 0
B) |z+4|+|z−4|=10 It is an ellipse with 2a=10 a=5 ae=4 e=45 C) ω=2(cosθ+isinθ) z=2(cosθ+isinθ)−1/(2(cosθ+isinθ)) z=2(cosθ+isinθ)−(cosθ−isinθ)/2
z=3cosθ+5isinθ2 Let z=x+iy So, x=3cosθ2,y=5sinθ2 2x/3=cosθ,2y/5=sinθ ⇒x29/4+y225/4=1 e=√1−b2a2 e=45 |z|=√(3cosθ/2)2+(5sinθ/2)2=√9cos2θ2+25sin2θ4=√9+16sin2θ4 Maximum value of sin2θ=1 ⇒√9+16sin2θ4≤52 |Rez|≤32 D) z=cosθ+isinθ z=cosθ+isinθ+1/(cosθ+isinθ) z=cosθ+isinθ+cosθ−isinθ z=2cosθ Hence, Imaginary part is 0 |z|≤2 Imz≤1