A) Let z=x+iy
|z−i|z||=|z+i|z||
|x+iy−i√x2+y2|=|x+iy+i√x2+y2|
|x+i(y−√x2+y2)|=|x+i(y+√x2+y2)|
√x2+(y−√x2+y2)2=√x2+(y+√x2+y2)2
Squaring both sides, we get
x2+(y−√x2+y2)2=x2+(y+√x2+y2)2
∴4y√x2+y2=0⇒y=0
Imaginary part is 0
B) |z+4|+|z−4|=10
It is an ellipse with 2a=10
a=5
ae=4
e=45
C) ω=2(cosθ+isinθ)
z=2(cosθ+isinθ)−1/2(cosθ+isinθ))
z=2(cosθ+isinθ)−(cosθ−isinθ)/2
z=3cosθ+5isinθ2
Let z=x+iy
So, x=3cosθ2,y=5sinθ2
2x/3=cosθ,2y/5=sinθ
⇒x29/4+y225/4=1
e=√1−b2a2
e=45
|z|=√(3cosθ/2)2+(5sinθ/2)2=√9cos2θ2+25sin2θ4=√9+16sin2θ4
The maximum value of sin2θ=1
⇒√9+16sin2θ4≤52
|Re(z)|≤32
D) w=cosθ+isinθ
z=cosθ+isinθ+1/(cosθ+isinθ)
z=cosθ+isinθ+cosθ−isinθ
z=2cosθ
Hence, the imaginary part is 0
|z|≤2
Im(z)≤1