wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the statements in List 1 with those in List 2
[Note: Here z takes the values in the complex plane and Im z and Re z denote, respectively, the imaginary part and the real part of z]

Open in App
Solution

A) Let z=x+iy
|zi|z||=|z+i|z||
|x+iyix2+y2|=|x+iy+ix2+y2|
|x+i(yx2+y2)|=|x+i(y+x2+y2)|
x2+(yx2+y2)2=x2+(y+x2+y2)2
Squaring both sides, we get
x2+(yx2+y2)2=x2+(y+x2+y2)2
4yx2+y2=0y=0
Imaginary part is 0
B) |z+4|+|z4|=10
It is an ellipse with 2a=10
a=5
ae=4
e=45
C) ω=2(cosθ+isinθ)
z=2(cosθ+isinθ)1/2(cosθ+isinθ))
z=2(cosθ+isinθ)(cosθisinθ)/2
z=3cosθ+5isinθ2
Let z=x+iy
So, x=3cosθ2,y=5sinθ2
2x/3=cosθ,2y/5=sinθ
x29/4+y225/4=1
e=1b2a2
e=45
|z|=(3cosθ/2)2+(5sinθ/2)2=9cos2θ2+25sin2θ4=9+16sin2θ4
The maximum value of sin2θ=1
9+16sin2θ452
|Re(z)|32
D) w=cosθ+isinθ
z=cosθ+isinθ+1/(cosθ+isinθ)
z=cosθ+isinθ+cosθisinθ
z=2cosθ
Hence, the imaginary part is 0
|z|2
Im(z)1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon