wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Match the statements of Column I with values of Column II

Column IColumn II
A.If f(x)=x+1, when x<0,
f(x)=x21,for x0,
then f(f(x)), for 1x0 is
1.x32
B.If f(2tanx1+tan2x)=(cos2x+1)(sec2x+2tanx)2 then f(x) is2.x2+2x
C.If f(x+y+1)=(f(x)+f(y))2 for all x,yR and f(0)=1, then f(x) is3.1+x
D.If 4<x<5 and f(x)=[x4]+2x+2, where [y] is the greatest integer y, then f1(x) is4.(x+1)2

A
A2.B4,C3,D1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A2.B3,C1,D4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A3.B2,C4,D1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A1.B3,C4,D2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A A2.B4,C3,D1
A) f(x)={x+1,x<0x21,x0

fof(x)={2x+1,x<1(x+1)21,1<x<0={2x+1x<1x2+2x,1<x<0
B) f(2tanx1+tan2x)=(cos2x+1)(sec2x+2tanx)2
=(2cos2x1+1)(sec2x+2tanx)=sec2x+2tanxsec2x=1+2tanx1+tan2x
Therefore,
f(x)=1+x
C) f(x+y+1)=(f(x)+f(y))2 ...(1)
f(0)=1=(1+0)2 ...(2)
Substituting x=0=y in (1)
f(1)=(1+1)2=4 ...(3)
Substituting x=0,y=1 in (1)
f(2)=(1+2)2=9 ...(4)
And substituting x=1,y=1 in (1)
f(3)=(2+2)2=(1+3)2=16 ...(5)
From (2),(3),(4) and (5), we get
f(x)=(1+x)2
D) 4<x<51<x4<54{x4}=1f(x)=1+2x+2=2x+3
Now let
y=2x+3x=y32
Therefore,
f1(x)=x32'

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon