(i) By Direct method
Given data: 1, 2, 3, 4, 5
σ=√∑x2in−(∑xin)2
∑xi=1+2+3+4+5=15
∑x2i=1+4+9+16+25=55
σ=√555−(155)2
σ=√11−9=√2
(ii) By Mean method
Given data: 3, 4, 6, 7
σ=√∑(xi − ¯x)2n
¯x=3+4+6+74=5
∑(xi−¯x)2=(3−5)2+(4−5)2+(6−5)2+(7−5)2 =4+1+1+4 =10
⇒σ=√104=√2.5
(iii) By Assumed mean method
Given data: 3, 4, 5
σ=√∑d2in−(∑din)2
Here, A = 4 (Middle value of the given data)
∑di=∑(xi−A)=(3−4)+(4−4)+(5−4)=−2−1+0+1+2=0
∑d2i=∑(xi−A)2=(3−4)2+(4−4)2+(5−4)2=1+0+1=2
σ=√24−(04)2=√0.5