The correct option is
A π4cot−1(2r2)=tan−1(24r2)=tan−1((2r+1)−(2r−1)1+(2r+1)(2r−1))
cot−1(2r2)=tan−1(2r+1)−tan−1(2r−1)
So, ∑cot−1(2r2)=∑(tan−1(2r+1)−tan−1(2r−1))
Sum =∑cot−1(2r2)=tan−13−tan−1(1)+tan−15−tan−1(3)........tan−1(2n+1)−tan−1(2n−1)
Sum =Limn→∞∑cot−1(2r2)=tan−1(∞)−tan−1(1)=π2−π4=π4