We have,limx→01−cos(1−cos2x)x4
We know that
cos2x=1−2sin2x
Therefore,
limx→01−cos(1−(1−2sin2x))x4
limx→01−cos(2sin2x)x4
limx→01−(1−2sin2(sin2x))x4
limx→02sin2(sin2x)x4
limx→02sin2(sin2x)sin4x×sin4xx4
2limx→0(sin(sin2x)(sin2x))2×sin4xx4
We know that
limx→ 0sinxx=1
Therefore,
⇒2
Hence, this is the answer.