limx→0sinx√x+1−√1−x
First we are puting x→0 then we get Indeterminate form 00.
Now, we do rationalization.
limx→0sinx×(√x+1+√1−x)(√x+1−√1−x)×(√x+1+√1−x)
⇒limx→0sinx×(√x+1+√1−x)2x.
⇒limx→0sinxx×limx→0(√x+1+√1−x)2.
[∵limx→0sinxx=1]
⇒1×limx→0(√x+1+√1−x)2
1×1=1