The correct option is
A 12limx→0 xtan2x−2xtanx(1−cos2x)2
We know that, 1−cos2x=2sin2x ; Using this identity we can write
=limx→0 2tan2x−2xtanx(2sin2x)2
=limx→0 xtan2x−2xtanx4sin4x
We also know that, tan2x=2tanx1−tan2x
Substituting,
=limx→0 (x4sin2x)[2tanx1−tan2x−2tanx]
=limx→0 x4sin4x[2tanx−2tanx+2tan3x1−tan2x]
=limx→0 x4sin2x×2tan3x1−tan2x
=limx→0 12×xsinx×(tan3xsin3x)×1(1−tan2x)
=limx→0 12×xsinx×1cos3x×11−tan2x
We know that =limx→0 sinxx=1
∴ =limx→0 121(sinxx)×1cos3x×11−tan2x
=12×1cos(0)×11−tan(0)
=12×1×1×1
=12