Evaluate: limx→0⎡⎢ ⎢ ⎢ ⎢⎣(1+x)18−(1−x)18x⎤⎥ ⎥ ⎥ ⎥⎦
To evaluate limx→0⎡⎢ ⎢ ⎢ ⎢⎣(1+x)18−(1−x)18x⎤⎥ ⎥ ⎥ ⎥⎦
Put x=0
=⎡⎢ ⎢ ⎢ ⎢⎣(1+0)18−(1−0)180⎤⎥ ⎥ ⎥ ⎥⎦
=00 form.
Now, Use the L-hospital rule
=limx→0⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ddx[(1+x)18]−ddx[(1−x)18]ddx(x)⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
=limx→0⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣18[(1+x)−78(0+1)]−18[(1−x)−78(0−1)]1⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ [∵ddxxn=nxn−1]
=limx→018(1+x)−78+18(1−x)−78
=18(1+0)−78+18(1−0)−78
=18+18
=28
=14
∴limx→0⎡⎢ ⎢ ⎢ ⎢⎣(1+x)18−(1−x)18x⎤⎥ ⎥ ⎥ ⎥⎦=14