The correct option is
B Does not exist
limx→2(√1−cos(2(x−2))x−2)
Using, cosθ=1−2sin2θ⇒1−cos2θ=2sin2θ
and substitute x−2=t ∴ as x→2t→0
limx→2 ⎛⎜
⎜⎝√2sin2(x−2)x−2⎞⎟
⎟⎠=limt→0 √2|sint|t
Now in order to remove the modulus we have separately solve the left hand and right hand limit.
L.H.L
limt→0− −√2sintt=−√2limt→0− sintt=−√2 (for t<0 |sint|=−sint)
R.H.L
limt→0+ √2sintt=√2limt→0+ sintt=√2 (t>0, |sint|=sint)
Since, LHL≠RHL we say that the limit does not exist.
Correct answer : Option B.