Consider the given function,
limx→π2cotx−cosx(π−2x)3
Apply L-Hospital Roll, we get
limx→π2ddx(cotx−cosx)ddx(π−2x)3=limx→π2−cosec2x−(−sinx)3.(−2)(π−2x)2
=limx→π2−cosec2x+sinx−6(π−2x)2(00)
Again apply L-hospital Roll, we get
limx→π2ddx(−cosec2x+sinx)−6ddx(π−2x)2=limx→π2−2cosecx.(−cosecxcotx)+cosx−6.2.(−2)(π−2x)
=limx→π22cosec2xcotx+cosx24(π−2x)
Again apply L-Hospital Roll ,we get
=limx→π22ddxcosec2xcotx+ddxcosx24ddx(π−2x)
=limx→π22.cosec2x(−cosec2x)+2cotx.2cosecx.cosecxcotx24.(0−2)
=limx→π2−2.cosec4x+2cot2x.cosec2x.−48
=limx→π2−cosec4x+cot2x.cosec2x.−24
=−cosec4π4+cot2π4.cosec2π4−24=−14+0.12−24
=124
Hence ,This is answer