wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ2cotxcosx(π2x)3=

A
120
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
124
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
129
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
125
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 124

Consider the given function,

limxπ2cotxcosx(π2x)3

Apply L-Hospital Roll, we get


limxπ2ddx(cotxcosx)ddx(π2x)3=limxπ2cosec2x(sinx)3.(2)(π2x)2

=limxπ2cosec2x+sinx6(π2x)2(00)


Again apply L-hospital Roll, we get


limxπ2ddx(cosec2x+sinx)6ddx(π2x)2=limxπ22cosecx.(cosecxcotx)+cosx6.2.(2)(π2x)

=limxπ22cosec2xcotx+cosx24(π2x)


Again apply L-Hospital Roll ,we get


=limxπ22ddxcosec2xcotx+ddxcosx24ddx(π2x)

=limxπ22.cosec2x(cosec2x)+2cotx.2cosecx.cosecxcotx24.(02)

=limxπ22.cosec4x+2cot2x.cosec2x.48

=limxπ2cosec4x+cot2x.cosec2x.24

=cosec4π4+cot2π4.cosec2π424=14+0.1224

=124

Hence ,This is answer


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon