wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ2(limxcosx2cosx22cosx23......cosx2n) equals to

Open in App
Solution


sin x=2sinx2cosx2

sin x=22sinx22cosx2cosx22

sin x=23sinx23cosx2cosx22cosx23

...

....

sin x=2nsinx2nnk=1cosx2k

nk=1cosx2k=sin xx(sin 2nx2nx)1

limnnk=1cosx2k=sin xx


Substituting this value in the given expression, we get

limxπ2sin xx

=sin π2π2

=2π.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon