We have,
limx→π4(4√2−(cosx+sinx)51−sin2x)
Apply L-Hospital rule,
⇒limx→π4(0−5(cosx+sinx)4(−sinx+cosx)0−cos2x(2))
⇒limx→π4(5(cosx+sinx)4(cosx−sinx)2cos2x)
⇒limx→π4(5×4(cosx+sinx)3(cosx−sinx)+5(cosx+sinx)4(−sinx−cosx)2(−sin2x)(2))
⇒limx→π4(20(cosx+sinx)3(cosx−sinx)−5(cosx+sinx)5−4sin2x)
⇒20(cosπ4+sinπ4)3(cosπ4−sinπ4)−5(cosπ4+sinπ4)5−4sinπ2
⇒0−5(1√2+1√2)5−4
⇒5(2√2)54
⇒5(324√2)4
⇒404√2
⇒10√2
⇒5√2
Hence, this is the answer.