We have,
limx→∞[3x−43x+2]x+13
limx→∞[1+(−6)3x+2]x+13
We know that
limx→∞(1+ax)x=ea
Therefore,
=e−6
=1e6
Hence, the value is 1e6.
limx→3x−3√x−2−√4−x
limx→∞{3x−43x+2}x+13