Given that
limx→∞sec−1(xx+1)
=limx→∞cos−1(x+1x) Since cos−1x=sec−11x
=limx→∞cos−1(xx+1x)
=limx→∞cos−1(1+1x)
Put the limit and we get
=cos−1(1+1∞)
=cos−1(1+0)
=cos−11
=cos−1cos0
=0
Hence, option A is correct answer