wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ2tan2x(2sin2x+3sinx+4sin2x+6sinx+2) is equal to

A
34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
112
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
512
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 112
limxπ22sin2x+3sinx+4sin2x+6sinx+2cot2x
Using LHR.
4sinxcosx+3cosx22sin2x+3sinx+4(2sinxcosx+6cosx)2sin2x+6sinx+22cotxcsc2xcosx[4sinx+322sin2x+3sinx+4(2sinx+6)2sin2x+6sinx+2]2cosxsin3x
Cancelling cosx from numerator and denominator.
4+3292+62921
129(78)2149112


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon