wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/4π/4dx1+sinx equals

Open in App
Solution

Let , π4π411+sinxdx

We know that , aaf(x)dx=2a0f(x)dx

2×π4011+sinxdx=π2011+sinxdx

I=π2011+cos(π2x)dx

cosA=2cos2A21

=π2011+2cos2(π2x)21dx

=π2o12cos2(π2x)2dx

==π2012cos2(π4x2)dx

=12π2osec2(π4x2)dx

=[12tan(π4x2)]π20+C

=12tan(π4π2)12tan(π402)+C

=12tan(π4)12tanπ4+C

=12tanπ412tanπ4+C

=12×112×1+C

=14


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon