Let , ∫π4−π411+sinxdx
We know that , ∫a−af(x)dx=∫2a0f(x)dx
∫2×π4011+sinxdx=∫π2011+sinxdx
I=∫π2011+cos(π2−x)dx
∵cosA=2cos2A2−1
=∫π2011+2cos2(π2−x)2−1dx
=∫π2o12cos2(π2−x)2dx
==∫π2012cos2(π4−x2)dx
=12∫π2osec2(π4−x2)dx
=[12tan(π4−x2)]π20+C
=12tan(π4−π2)−12tan(π4−02)+C
=12tan(−π4)−12tanπ4+C
=−12tanπ4−12tanπ4+C
=−12×1−12×1+C
=−14