Let, x2+ax+b=0 has roots x1,x2
∴x1+x2=−a
x1x2=b
and y2+by+a=0 has roots y1,x2)
and A(x1,y1) and B (x2,y2)
are point on the circle x2+y2=1
∴x21+y21=1=x22+y22⇒x21−x22=y22−y21
∴eqn of AB is
y−y1=y1−y2x1−x2(x−x1)
y(x1−x2)−y1x1+x2y1=(y1y2)k−x1y1+x1y2
y(x1−x2)−x(y1−y2)=x1y2−x2y1
y+x(x1+x2y1+y2)=x1y2−x2y1x1−x2
⇒by+ax=b(x1y2−x2y1)x1x2
⇒by+ax=bb(x1√1−x22−x2(√1−x21)x1x2
⇒by+ax=b(√x21−b2−√x22−b2)x1x2
⇒ax+by=−a−b−1